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Nonlinear spiral waves in rotating pipe flow 
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A numerical investigation of finite-amplitude. non-axisymmetric disturbances. in the 
form of travelling spiral waves, is made in pipe flow with superimposed solid-body 
rotation. Rotating pipe flow is found to be supercritically unstable both in the rapid 
and slow-rotation regimes. Earlier weakly nonlinear calculations, suggesting 
subcritical instability in the slow-rotation limit, are shown to be in error. Bifurcating 
neutral waves are calculated for various axial and azimuthal Reynolds numbers and 
wavenumbers. For fixed axial mean pressure gradient, the axial mean flow induced 
by these waves gives rise to a significant flux defect, in certain cases as large as 
40-50% of the undisturbed mass flux; the possible relevance of this finding to the 
phenomenon of vortex breakdown is pointed out. In non-rotating pipe flow, no 
neutral disturbances in the assumed form of spiral waves are found for moderate 
Reynolds numbers ; this indicates that previous conjectures, regarding a possible 
connection between nonlinear spiral waves in slowly rotating pipe flow and the 
asymptotic neutral states of Smith & Bodonyi (1982) in non-rotating pipe flow, are 
not valid. 

1. Introduction 
It is now recognized that the linear st'ability properties of fully developed laminar 

flow in a circular pipe, subjected t'o rigid rotation about its axis, are markedly 
different from those of non-robating pipe flow. Although, in the absence of rotation, 
pipe flow is entirely stable to infinitesimal perturbations, a relatively minute amount 
of rigid rotation is capable of causing linear instabiliby (Mackrodt 1976; Cott'on & 
8alwcn 1981). Also, in the rapid-rotation regime, Pedley (1969) first showed that' 
rigid rotation has a strong destabilizing effect, giving rise to linear instability a t  axial 
Reynolds numbers as low as 83. These theoretical predictions, which inituitively are 
somewhat surprising given that pipe flow and solid-body rotation by themselves are 
linearly stable flows, have been confirmed experimentally to a limited extent 
(Mackrodt 1976; Nagib et aE. 1971). 

Our interest in the stability of rotating pipe flow was originally aroused by t'he 
rather unusual behaviour of this flow in the slow-rotation limit and by its possible 
connection to the inst'ability of non-rotating pipe flow, which at' present remains a 
theoretically unresolved problem. Experimentally, non-rotating pipe flow under- 
goes transition a t  a finite Rcynolds number greater than about' 8100 depending 
on the particular experimental conditions (Leite 1959; Fox, Lessen & Bhat 1968), 
while, as remarked earlier, linear stability theory gives no evidence of instability. 
Furthermore, despite several attempts (Davey & Nguyen 1971 ; Itoh 1977; Davey 
l978a ; Pat>era 8- Orszag 1981), no relevant, nonlinear instability mechanism has been 
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identified, with the exception of the asymptotic theory of Smith & Bodonyi (1982). 
Using a nonlinear-critical-layer formalism, valid for large Reynolds numbers, Smith & 
Bodonyi (1982) were able to  find finite-amplitude, neutral, non-axisymmetric modes 
in the form of spiral waves. It appears that this class of waves exists only for 
azimuthal wavenumber equal to 1 and their phase speed and axial wavenumber are 
amplitude-dependent ; in particular, as the amplitude decreases, the Reynolds 
number being large, the axial wavenumber tends to zero and the phase speed 
approaches a constant value. Interestingly enough, in slowly rotating pipe flow, 
linear instability also shows up a t  high axial Reynolds number, for spiral waves with 
azimuthal wavenumber equal to 1 and axial wavenumber approaching zero as the 
axial Reynolds number tends to  infinity (Mackrodt 1976; Cotton & Salwen 1981). 
This suggests that perhaps one could reach the class of finite-amplitude modes of 
Smith & Bodonyi (1982) as the pipe rotation is reduced to zero, by continuation 
along the branch of finite-amplitude neutral states that bifurcates from linear 
instability of slowly rotating pipe flow. This speculation was put forward by Akylas 
& Demurger (1984). Independently, Cowley & Smith (1985) had a similar idea; but, 
rather than using slowly rotating pipe flow as a starting point of the continuation 
procedure, they proposed to use flow in a pipe of slightly elliptical cross-section which 
is also unstable according to  linear theory (Davey 19786). Furthermore, through a 
weakly nonlinear analysis, Akylas & Demurger (i984) found subcritical instability in 
slowly rotating pipe flow, indicating that finite-amplitude, neutral spiral waves exist 
for rotation slower than that required for linear instability. Of course, the validity 
of weakly nonlinear theory is limited to small-amplitude disturbances, close to 
critical conditions for linear instability; in order to explore the behaviour of 
nonlinear disturbances as the rotation is reduced to  zero, and thereby examine the 
soundness of the above conjecture, a numerical investigation is required. 

Numerical computation of finite-amplitude travelling waves has proven a fruitful 
approach to the nonlinear stability of certain shear flows. The majority of the 
existing work has been confined to computations of two-dimensional disturbances on 
plane shear flows such as plane Poiseuille flow (Zahn et al. 1974; Herbert 1976), plane 
Poiseuille-Couette flow (Herbert 1977 ; Milinazzo & Saffman 1985) and, more 
recently, boundary-layer flows (Milinazzo & Saffman 1985). However, as explained 
earlier, the problem a t  hand calls for the computation of non-axisymmetric 
travelling waves in cylindrical geometry. For this purpose, we use an extension of the 
spectral method proposed by Leonard & Wray (1982), which expands the velocity 
components in terms of a complete set of divergence-free functions that auto- 
matically satisfy the no-slip conditions a t  the wall of the pipe. The technique was 
originally tested by Leonard & Wray (1982), who re-obtained the least damped linear 
mode of non-rotating pipe flow through a time-dependent calculation. Here we 
present an extension that is particularly suited for computing nonlinear steady 
disturbances in rotating pipe flow. 

As already indicated, the present study was originally motivated by the instability 
of rotating pipe flow in the slow-rotation limit. However, nonlinear spiral waves are 
also of some interest in the rapid-rotation regime : the linear spiral instability waves, 
found by Pedley (1969) in rapidly rotating pipe flow, twist in the opposite direction 
to the swirl of the basic flow, which makes them possible candidates for explaining 
the generation of similar backwards spiral disturbances often observed in vortex 
breakdown (Hall 1972; Leibovich 1978). This proposal, which was first made by 
Ludwieg (1962, 1965), received some criticism from Hall (1972) and others: it is not 
clear how weak spiral disturbances, arising from a linear instability mechanism, can 
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lead to the dramatic flow changes, in particular axial-flow stagnation, that 
accompany vortex breakdown. In this respect, the changes induced in the basic flow 
by the presencc of finite-amplitude spiral waves could provide some useful 
information about the possible relevance of the instability mechanism proposed by 
Ludwieg to thc phcnornenon of vortex breakdown. 

2. Formulation 
Consider fully developed laminar flow in an infinitely long, circular pipe of radius 

To, 0 < r < T o ,  - 00 < z < 00, subjected to rigid rotation about its axis with constant 
angular velocity w .  The basic. steady flow, which is driven by a constant axial 
pressure gradient, is the combination of a parabolic velocity profile, Wn( l  - r z / r i ) ,  
with centreline velocity W,, in the axial direction, and solid-body rotation. W T ,  in the 
azimuthal direction. Our interest centres on finite-amplitude perturbations to this 
basic flow in the form of periodic spiral waves travelling with constant phase speed. 
Taking the axial wavelength to be 2 x L ,  three relevant dimensionless parameters are 
the axial Reynolds number R, the azimuthal Reynolds number a, and the 
dimensionless axial wavenumber ,u . 

where v is the fluid kinematic viscosity. Earlier work (Mackdrodt 1976) has shown 
that, in terms of these parameters, the slow-rotation regime (in which we seek the 
least amount of rotation needed to linearly destabilize a primarily axial flow) is 
defined by the limit 

n = 0(1), R = pR = 0(1), p -+ 0. (2) 

On the other hand, the rapid-rotation regime (in which we seek the least amount of 
axial flow needed to linearly destabilize a predominantly azimuthal flow) is realized 
in the limit (Pedley 1969) 

R = O ( l ) ,  d = pQ = 0(1), ,u -+ 0. (3) 

The appropriate scalings of the pcrturbation-velocity components and pressure differ 
in thcse two extremes; we choosc to scale according to the slow-rotation regime but, 
as will be discussed later (see $4) ,  this choice does not prohibit us from studying the 
rapid-rotation regime as well. Thus, we define dimensionless (primed) variables 
according to 

whcre t is time, u = (u ,  v ,  w) are the radial, azimuthal and axial perturbation-velocity 
components in cylindrical coordinates ( r ,  8, z ) ,  p is the perturbation pressure, and p 
is the fluid density. Dropping the primes, the governing equations in dimensionless 
form are 
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where 

with 

with 
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D - m / E  0 

D 

s z a  a 
D = - - + ( l - r 2 ) - ,  

R ae aZ 

Finite-amplitude, periodic spiral-wave solut’ions of the governing equations (5): (6) 
can be formally expanded in Fourier series : 

to cc 

u = s uk(r)cik$,  p = s pk(r)e ik$  (0 < r < I ) ,  ( 1 1 )  

where $h = z+ZO-c t ;  (12) 

ti=-=, k=-oo 

here 1 is the (integer) azimuthal wavenumber, c. is the constant real phase speed and, 
in view of the scalings chosen in (4), the axial wavelength is normalized to 27t. Also, 
since u and p are real, 

where * denotes complex conjugate, so that the sums in (11) may be restricted to 
k 2 0. It is worth emphasizing that the spiral waves (1  1) comprise only a special class 
of solutions which, for reasons already discussed in $ 1, are of particular interest here ; 
more complicated non-axisymmetric solutions would require the use of separate 
Fourier series in the axial and azimuthal directions. 

For given values of the parameters R, SZ, ,u and the wavenumber 1 (plus a phase 
normalization to be discussed in $3),  the unknown Fourier coefficients uk ,pk  and the 
phase speed c are determined by requiring that the series ( 1 1 )  satisfy ( 5 ) ,  (6), subject 
to regularity conditions at  the centre ( r  = 0) and the no-slip condition a t  the wall of 
the pipe ( r  = 1) ; this task has to be dealt with numerically and a suitable procedure 
is outlined in $3. After the solution has been obtained, it is convenient to have a 
measure of the size of the perturbation and, for this purpose, we choose the relative 
kinetic energy of the fluctuating harmonics (I k 1 2 1 )  in ( l l ) ,  averaged over one axial 
wavelength : 

(13) U-k = u k* , p-k = p”, 

m 

E =  S E,, 
k=l 
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where 
E ,  = - rdr(lU21UIG/2+lU2)vLt2+)Wlc12), 

Eb  2x s’ 0 

and E,  is the kinetic energy of the basic flow per unit length in the axial 
direction : 

Similarly, in order to quantify the axial and azimuthal mean-flow components 
induced by the perturbation disturbance (represented by the k = 0 harmonic in (1 l ) ) ,  
the associated mass flux @ and r, the circulation about the axis averaged over the 
pipe radius, are defined 

(16a) 

where @,, r, are the corresponding quantities for the basic flow: 

2x R 
3 R  

@, = in, r, = -p=. 

Note that in this discussion the mean axial pressure gradient driving the flow is kept 
fixed and, thus, the disturbance is allowed to  modify the mass flux of the basic flow ; 
another choice would be to keep the mass flux fixed and allow the pressure gradient 
to vary. For finite-amplitude perturbations, these two formulations are not 
equivalent. 

3. Numerical method 
The numerical procedure for computing spiral-wave solutions of the form (1 1) 

follows along the lines of the technique developed by Leonard & Wray (1982). The 
overall strategy is to expand each velocity Fourier mode uk(r)eik@ in terms of a 
complete set of divergence-free vector functions {X:(r) eik@4), which behave appro- 
priately as r + 0 and satisfy the no-slip condition at  r = 1 : 

V-X:(r)eiR@ = 0, X:(r = 1) = 0. (18) 

The coefficients a: of the spectral expansion (17) are then determined from the 
momentum equation (5), which is discretized through a weighted-residual technique, 
using a set of vector weight functions {<&(r) e-ik@} that are well-behaved a t  r = 0 and 
satisfy the following requirements : 

V,.<&(r)e-”$ = 0,  <&(r = = 0,  (19) 

Jr being the unit vector in the radial direction. To be more specific, inserting the 
expansions ( l l ) ,  (17) into the momentum equation (5), and taking the inner product 
with each of the weight functions, leads to an infinite set of algebraic equations for 
the unknown coefficients a;: 

(20) 1 1 
R ikcA&,+=B$,+iC$, a:+N$ = 0, 
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where repeated subscripts are automatically summed (here and throughout this 
paper) and 

rdrXEelk@-cfse-lk*, (21 a)  s: A:,= - 

K’C,,=- i ~ r d r V : X , e l k ~ . c ’ C , e - i k ~ ,  (21 h )  

ckn = - i 1; r dr  LXE e 1 k 4 - C ~  eplk@, (21 c )  

Note that, owing to conditions (19), the pressure term has dropped out of (20) ; if the 
pressure field is desired, it can be calculated through the solution of a Poisson 
equation, after the velocity field has been obtained. Also, each term in (20) has a clear 
interpretation : the first three terms, which are linear in a:, represent, respectively, 
the temporal acceleration, the viscous term, and the interaction of the basic flow with 
the perturbation, the last term, which couples the different Fourier modes, 
represents the nonlinear perturbation interactions. 

The success of the spectral technique depends heavily on the specific choice of 
expansion and weight functions. With the exception of the k = 0 family, we use the 
same sets of expansion and weight vectors as those proposed by Leonard & Wray 
(1982). In  particular, each set fyi(r)> is divided into three families, denoted by ( -  1) 
(which contains only a single vector), ( + ), and ( - ) : 

~ “ , = & ! , ; x ; +  ) . . . )  xy )... ; x i -  ) . . . )  xi- ,... } (k30) ( 2 2 )  

and &“,> are divided from a generating vector 

Xn- k +  e l k@ = V x a$ elk@ ( k  2 1, n >, O) ,  (23) 

where E ;  = {-iqz,  Tqz,O}, ( 2 4 a )  

(24b) with n -  n r 1 g, ( r 2 ) ,  
4’ = @ + l  = y S j l ( 1 -  2 2 S’l 

g i  being a shifted Jacobi polynomial (Abramowitz & Stegun 1968, p. 773)  and s = k l .  
Also, 

x’”, = xy+x’”; ( k  3 l), (25)  

where x!: are derived from ( 2 3 ) ,  (24a)  with qZl =rsil(l-rz).  The three cor- 
responding families of vector weight functions for each Ic 2 0 are chosen in an 
analogous fashion : 

(26)  

/* m ( k  > 1, m 2 O),  (27) 

where p; = Gq2, fQ;,O), (28) 

(29) and c’”, = { -  g, ,o> ( k  3 1). 

It is straightforward to verify that the above sets of vector functions {Xjcn(r) elk$), 
{<:(~)e-’~@d) behave correctly as r + O  and fulfil the requirements (18), (19) 
imposed earlier. Finally, the choice of expansion and weight vector functions for 
k = 0 requires extra care. In  view of our earlier assumption of fixed mean axial 

{S’C,} = {el ; s;+, . . ., <:, .. . ; g - ,  . . ., gk-, . . .> ( E  2 O) ,  
ck* e-iW = V x V x pk e-’kI 

i y s+ l  + irs-l g;pl, r c T + l  + yspl 7-1 
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pressure gradient, it is clear that the mean flow induced by the perturbation should 
not generate a mean axial shear stress a t  r = 1 .  Furthermore, it can be shown (see 
Appendix) that no mean azimuthal shear stress is present a t  r = 1 either ; in other 
words, the torque required to maintain the constant angular velocity of the pipe 
vanishes. Accordingly, for k = 0 ,  the expansion vectors 

are used so that the above conditions are automatically met. The corresponding 
weight functions for k = 0 are 

= 0 ,  c: = {0,0,v;qo,), c:- = (0, v;q;, 0 )  (m 2 0). 

In implementing the spectral technique numerically, the infinite series ( 1  1)  and 
(17) are truncated a t  a finite number of Fourier modes k = K and expansion 
functions n = N ,  say, with an equal number (m < N )  of weight functions. Thus, (20) 
reduces to a finite set of algebraic equations for a finite number of unknowns. More 
specifically, for k = 0, as there is no ( -  1) family of expansion and weight functions, 
equations (20) give 2N+2 real equations while for 1 < k < K ,  2 K ( 2 N + 3 )  real 
equations are obtained, a total of (2K+ 1 )  ( 2 N + 3 ) -  1 real equations. On the other 
hand, there are (2K+ 1) ( 2 N + 3 )  real unknowns, consisting of a",, the real and 
imaginary parts of uz (1 < E < K ) ,  and the phase speed c .  The additional equation is 
provided by a phase normalization which. in this calculation, is chosen so that the 
real part of ul (r )  vanishes at some radial point close to r = 0.5. Thus, the number of 
unknowns matches the number of equations, which can now be solved iteratively 
through a multi-dimensional Newton's method to obtain the velocity field and the 
phase speed for given values of the parameters R, Q, p and I ;  subsequently, the 
energy, mass flux and average circulation, associated with a spiral wave, can be 
readily computed from (14), (15) and (16). 

It is remarkable that, although the detailed implementation of the numerical 
procedure outlined above is quite involved, a number of steps, prior to numerical 
solution of the final system of nonlinear equations, can be carried out analytically. 
Leonard bz Wray (1982) noted that the matrices with elements A'",,, B;, in (20) arc 
tightly banded and can be evaluated analytically using properties of the shifted 
Jacobi polynomials (Abramowitz & Stegun 1968, p. 773). It turns out that the matrix 
with elements C:, in (20) is also partially banded (but not as sparse as A'",,, Bt",,) and 
can be evaluated analytically (Toplosky 1987) ; thus all matrix elements of the linear- 
stability cigenvaluc problem are derived from analytic expressions. A major portion 
of the computational effort is devoted to calculating the nonlinear coupling terms 
N'", in (20) numerically, using the trapezoidal rule; these involve integrals of triple 
products of shifted Jacobi polynomials and cannot be evaluated exactly. Further 
dctails concerning questions of numerical implementation can be found in Toplosky 
(1987). The different tests used to check the accuracy of the calculations are 
described below together with the results. 

4. Results 
As explained in $3, the procedure for computing finite-amplitude neutral spiral 

waves is iterative and requires a sufficiently accurate initial guess in order to  achieve 
convergence. A convenient point of departure for the iteration is provided by the 
results of linear and weakly nonlinear theories, close to critical conditions for linear 
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instability; thesc known results are also used as partial checks of the numerical 
technique. In particular, the eigenvalue problem of linear-stability theory, where c 
is the eigenvalue. is readily obtained from (20) with k = 1 and Nk, = 0. Linear- 
neutral-stability curves (c real) were calculated for various combinations of €2, 0, p, 
1, both in the slow and rapid-rotation regimes (2 ) ,  (3), and complete agreement with 
results of previous work (Rilackrodt 1976; Cotton & Salwen 1981 ; Pedley 1969) was 
found; this leads u s  to believe that the matrix elements ALn, Bkn,  Ckn in (20) were 
computed correctly. As expected, calculations could not be carried out arbitrarily 
close to the fast-rotation limit ( 3 )  (p = 0), as the adopted scalings of the velocity 
components (4) are not valid there; however, for moderately small values of 
p(0.01 < ,u < 0.2), which cause no trouble numerically, comparison with the 
asymptotic results of Pedley (1969) indicates that  the fast-rotation limit has 
essentially been reached and, thus, no rcscaling was dremed nccessary i n  order to 
examine this limit. 

In the weakly nonlinear theory, valid close to critical conditions for linear 
instability, the disturbance amplitude is small and the primary harmonic ( k  = 1) in 
(1 1) dominates, so that 

u = t . ( u 1 1 e ' ~ + * ) + ~ 2 ~ " 2 + ~ 2 ( ~ 2 2 e f 1 Q + * ) + ~ J ( ~ 1 J ~ ~ ' ~ + * ) +  ..., ( 3 2 )  

c = c,+s2c2f ...: 

0 = L?,+e",+.... 

(33 1 
(34) 

where e(< 1) is a measure of the disturbance amplitudc, co and u" are the cigenvalue 
and eigenfunction, respectively, of linear theory at critical conditions, and e2c2 is the 
leading-order nonlinear correction to the phase speed ; also, it has been assumed that 
the parameters A, p, 1 are kept fixed and 0 is perturbed by e 2 0 ,  so that c remains real. 
The mean-flow and second-harmonic corrections uo2 and uZ2 are dircctly obtained 
from (20) with k = 0, 2,  respwtively, since the nonlinear coupling terms iVk, are 
known (to this order of approximation) in terms of the primary harmonic. 
Proceeding to O(t.'), the nonlincar correction u" el6 to the primary satisfies an 
inhomogeneous problem of thc form 

where again X& is known in terms of u l ' ,  uo2 and uZ2. Following the usual 
orthogonality argument. the above algebraic system has no solution ( co  is an 
eigenvalue), unless the right-hand side is orthogonal to the solution of the 
corresponding homogeneous transpose system : 

(36) 

(37) 

The solvability condition (36), which is equivalent to two real equations. specifies the 
unknown corrections, c2 and Q,. Also, the Landau constant h a t  critical conditions 
(L?, = 0), as defincd by Akylas & Dcmurger (1984). is given by 

c 2 ~ ~ n + ~ 2 - ~ ~ ~ , ) 0 2 ] o ~  a = 0, 
3 0  

1 where j ; c o ~ t v , + E ~ a m + i ~ ~ m  1 a: = 0. 
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1 P I? sz R e h  Tm h 

0 
0 
1 
1 
0 
0.1 
0.1 
1 
1 

106.6 
165.7 
15.5.8 
19’2.7 
232.6 

8.305 
9.117 

109.3 
107.7 

-26.96 -35.4 
-43.37 -21.2 
- 33.52 - 90.3 
-53.54 -31.7 
-69.77 -15.0 

-41t5.5 -507 - 
-910.8 -607 
-52.06 -128 

-105.5 -88 

13.9 
24.0 
55.1 
38.7 
23.2 
15 
20 
57 
38 

TABLE 1 .  Landau constant h a t  linear-neutral-stability conditions for various combinations of 
paramrttm, 1. p .  R aiid 52 

with the understanding that the normalization of ull is the same as in Akylas 
& Demurger (1984), namely rwll = 1 where 1 ~ ~ ~ ~ 1  attains its maximum value in 
0 < r < 1 .  Comparing the results of weakly nonlinear theory, obtained from the above 
formulation. with those of Akplas & Ucmurger (1984) in the slow-rotation limit, it 
is found that the mean-flow and sccond-harmonic corrections uo2, uZ2 are in excellent 
agreement; howevcr, the corresponding values of the Landau constant h are at 
variance. In particular, the present calculations give Re h < 0, suggesting super- 
critical instability, while Akylas & Demurger (1984) find Re h > 0, implying 
subcritical instability. To resolve this conflict, the Landau constant was re-calculated 
by a different method, using a solvability condition based on the adjoint eigenvalue 
problem, and the results agreed with the present calculations. Also, going back to the 
work of Akylas & Demurger (1984), a programming error was discovered in the 
calculation of the inhomogeneous solution of the O(e3)  correction to the primary 
harmonic; when this was corrected, the results of all three methods were consistent. 
Thus, we feel confident that the values of the Landau constant listed in table 1 are 
correct. 

Using as a starting point the weakly nonlinear results described above, finite- 
amplitude calculations were carried out by continuation in either i? or 0, keeping the 
rest of the parameters fixed. Typical plots of the energy of the disturbance 
(calculated from (14), (15), after the infinite sum in (14) has been truncated a t  
k = K )  as a function of and D for 1 = 1 are shown in figure 1 (a ,  6). I n  particular, figure 
1 ( a )  refers to the slow-rotation limit and figurc 1 ( b )  to the rapid-rotation limit ; the 
corresponding linear-neutral-stability curves are indicated with a dotted line in the 
(2 ,D)  plane. It is clear that  all branches of finite-amplitude spiral waves bifurcate 
supercritically in both regimes of rotation and there is no sign of appearance of limit 
points. This was found to be the case for 1 = 1 ,  2, 3 and all values of ,u in the range 
0.1 < p  < 1 examined. For very small values of the disturbance energy, the 
numerical results agree closely with the predictions of weakly nonlinear theory and 
this provides an additional check of the calculations. 

Turning now to a more quantitative discussion of the nonlinear results, figure 
2 ( a ,  b,  c )  presents plots of the disturbance energy E ,  induced mass flux @, and 
average circulation I-, in three particular cases; for convenience. @ and r, which have 
already been normalized in (16) with respect to the basic flow, are shown in per cent 
in order to bring out the effect of the disturbance on the unperturbed flow more 
clearly. Figure 2 ( a )  refers to the branch that bifurcates from the point of the linear- 
neutral-stability curve that requires the minimum amount of rotation for linear 
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FIGGRE 1 .  Bifurcating branches of finite-amplitude spiral waves as functions of fi and SZ. (a )  slow- 
rotation regime ( I  = 1, ,u = 0 ;  K = 2, N = 8). ( b )  rapid-rotation regime ( I  = 1, I(. = 0.1; K = 2, 
N = 8). 

instability in the slow-rotation limit (a = -26.96, 2 = 106.6, 1 = 1, ,u = 0). As the 
rotation is increased (in absolute value) beyond $2 = -26.96 for fixed i;) = 106.6, the 
induced mass flux ds, which is always negative implying a mass-flux defect, rises 
significantly and reaches a value close to 30% of the undisturbed flux; this is in 
contrast to the induced average circulation, which always remains less than 10 % of 
the undisturbed value and is positive, again indicating a circulation defect (since 
52 < 0). Figure 2 ( b )  displays the branch that bifurcates from the point that requires 
the minimum amount of axial flow for linear instability in the rapid-rotation regime 
( R  = 83.05, d = -41.55, 1 = 1, ,u = 0.1). As R is increased past critical, for fixed d, 
the induced mass flux ds, which is again a flux defect, rises very steeply compared 
with the disturbance energy and reaches a maximum of about 30 YO of the basic flux ; 
the induced circulation is again relatively small. A similar situation is shown in figure 
2(c) for the branch that bifurcates from R = 91.17, a = -91.08 for ,u = 0.1, 1 = 2;  
however, here as R is increased, keeping the rest of the parameters fixed, the induced 
flux defect reaches a value close to 509'6, while the disturbance energy and induced 
circulation still remain relatively very small. 

The results reported above were obtained after having truncated the Fourier series 
(1  1) at a finite number of Fourier modes (0 < k < K )  and the'spectral expansion (17) 
a t  a finitc number of expansion vectors (n  < N ) .  The effect of this truncation on the 
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FIGURE 2. Disturbance energy E ,  induced flux @, and avrrage circulation r. ( a )  slow-rotation 
regime; R = 106.6 and SZ is increased past bifurcation point, at SZ = -26.96 (I = 1, p = 0 ;  K = 4. 
A’ = 10). (b) rapitl-rotat,ion regime; SZ = -41.55 and K is increased past- bifurcation point a t  
R = 83.05 (2  = 1, y = 0.1; K = 1, A r =  10). (c) rapid-rotation regime; Q = -91.08 and R is 
increased past bifurcation point) at, R = 91.17 ( I  = 2, p = 0.1; K = 4, Ar = 10). 

I 

convergence of the numerical solution is discussed now for a specific example which, 
howevclr, is typical of all other cases examined. Figure 3 ( a )  shows the effect of 
varying N on the disturbance energy for the same set of parameters as in figure 2 ( a )  
and fixed K = 1. The results strongly suggest that convergence has been achieved to 
a very good approximation for ilr 2 10. We also note that, using the linear stability 
of non-rotating pipe flow as a test case, N = 10 (which amounts to 2N + 3 = 23 radial 
modes) is adequate to reproduce the first few eigenvalucs (Salwen, Cotton & Grosch 
1980) for 2 < 0(104) and for both ‘wall’ and ‘centre’ modes. Thus, there is good 
reason to believe that convergence of the spectral expansion in the radial direction 
is satisfactory. On the other hand, figure 3 ( b )  shows the effect of increasing K 
in the same bifurcation diagram as in figure 3 ( a )  and fixed N = 10. As expected, the 
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EIGURE 3. Convergence study of the spectral method; disturbance energy E x  lo3 for fixed 
R = 106.6. R is increased past'bifurcation point at 52 = - 26.96 ( I  = 1, ,u = 0). (a )  Convergence in the 
number of radial modes N (K = 4). ( 6 )  Convergence in the number of Fourier modes K ( N  = 10). 

number of Fourier modes kept is not crucial for very small values of the disturbance 
energy, close to the bifurcation point, but as the energy increases, there is noticeable 
variation with K .  On the basis of figure 3 (b) ,  we may conclude that, for the maximum 
value of K = 4 used here, the numerical solution has converged to a good 
approximation for 10 I less than about 70, while for higher rotation, the results are 
a t  most qualitatively correct. This rather slow convergence of the Fourier series when 
the disturbance energy is finite was also noted by Herbert (1977) in plane Poiseuille 
flow. It is worth emphasizing that, apart from making the computations significantly 
more expensive, increasing the number of Fourier modes requires calculating (and 
programming) further nonlinear coupling terms N k  in (20), the complexity of which 
increases dramatically as K is increased. This is a drawback of Galerkin-type 
methods in general and, thus, if it is necessary to include a large number of Fourier 
modes, it may be advantageous to calculate the nonlinear terms using a different 
method (Milinazzo & Saffman 1985). The results shown in figure 1 (a, b )  were 
computed with K = 2 ,  N = 8 whereas those in figure 2 ( a ,  b ,  c )  with the higher 
resolution K = 4, N = 10. 

All numerical computations were performed on a VAX 11/780 computer using 
double-precision arithmetic. To increase the efficiency of the program, the nonlinear 
terms N& were expressed as products of the unknowns a: with known coupling 
matrices which were pre-calculated and stored (Toplosky 1987). For K = 4, N = 12, 
the storage requirements are on the order of lo6 single-precision words ; calculation 
of the coupling matrices takes about 12 hours and each Newton iteration about 
10min of CPU time. For K = 4, N = 10 the corresponding CPU times are 
approximately cut in half. 

5. Discussion 
Based on the results of the present work, it is clear now that there is no immediate 

connection between nonlinear spiral waves in slowly rotating pipe flow and possible 
nonlinear neutral states in non-rotating pipe flow ; finite-amplitude spiral waves 
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bifurcate supercritically from the linear-neutral-stability curve of slowly rotating 
pipe flow, and there is no sign (at least in the range of parameters that we examined) 
that the bifurcation branches fold back towards SZ = 0. Supercritical instability of 
slowly rotating pipe flow could have been inferred from weakly nonlinear theory but, 
unfortunately, the values of the Landau constant calculated by Akylas & Demurger 
(1984) were incorrect. suggesting subcritical instability. Thus, the speculation of 
Akylas & Demurger (1984) is not justified. This certainly does not imply that the 
nonlinear states of Smith & Bodonpi (1982) do not exist ; they were found through 
an asymptotic analysis, valid as R -+ co, whereas our computations of nonlinear 
waves were restricted to finite d 500; furthermore, even in the limit A -+ co, there 
is no guarantee that these two classes of nonlinear states are connected. In the range 
w < 500, our computations indicate that the states of Smith & Bodonyi (1982) (if 
they exist a t  such values of 8) cannot be reached by continuation from slowly 
rotating pipe flow. Also, as k increases, figure l ( a )  shows that bifurcation of 
nonlinear spiral waves in slowly rotating pipe flow becomes more supercritical (the 
real part of the Landau constant remains negative and increases in absolute value) ; 
this suggests that, contrary to our original hope, the states of Smith & Bodonyi 
(1982) most likely lie ‘far’ from the linear-neutral-stability curve of slowly rotating 
pipe flow. In  such a case, as already discussed in $4, the maximum number of Fourier 
modes used in the present work (K = 4)  is inadequate so that any numerical results 
would probably be of dubious validity. At any rate, our attempt to reach the 
asymptotic nonlinear states of Smith & Bodonyi (1982) failed, as spiral-wave 
disturbances in slowly rotating pipe flow do not appear to be directly connected with 
nonlinear states in non-rotating pipe flow for finite. Heuristically speaking, it 
seems that the stability properties of slowly rotating pipe flow are quite different 
from those of non-rotating pipe flow both for infinitesimal and finite-amplitude 
perturbations. It is hoped that a careful experiment would be able to identify such 
a striking difference in the behaviour of these two seemingly almost identical 
flows. 

An interesting feature of finite-amplitude spiral waves in rotating pipe flow, 
assuming that the axial pressure gradient is held fixed, is the significant mass flux 
defect, induced by the perturbation Reynolds stresses. Axial mean-flow distortion is 
relatively more pronounced in the rapid-rotation regime ; for the range of parameters 
examined, in certain cases it can exceed a defect of 45 % of the undisturbed mass flux, 
while, under the same conditions, the associated relative azimuthal-flow distortion is 
very small. This can be understood using simple scaling arguments: the linear 
asymptotic analysis of Pedley (1969) shows that, in the rapid-rotation regime (3), all 
three perturbation velocity components scale with the basic azimuthal velocity a t  
the pipe wall, oro, which is large compared with the centreline velocity 

Thus, in the limit p -+ 0, the induced axial mean flow (normalized with the basic axial 
flow) is expected to be relatively large compared with the induced azimuthal mean 
flow (normalized with the basic azimuthal flow). Indeed, as shown in figure 2 ( b ,  c ) ,  
close to the bifurcation point, the induced flux @ increases much more steeply than 
the induced circulation r. Of course, this qualitative argument cannot reveal that 
the induced axial mean flow represents a substantial flux defect, a finding that may 
have some relevance to the phenomenon of vortex breakdown. As already indicated, 
Ludwieg (1962, 1965) and Pedley (1969) noted that linear spiral instability waves in 
rotating pipe flow, as they twist in the opposite direction to the swirl of the basic flow 
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(0 < 0 for 1 > 0 ) ,  are reminiscent of similar wave disturbances often observed in 
vortex breakdown. Our calculations of nonlinear spiral waves, and in particular the 
substantial flux defect found, lend support to  this proposal : the spiral waves 
observed in vortex breakdown are in fact accompanied with axial-flow stagnation 
(Hall 1972 ; Leibovich 1978), a phenomenon that cannot be explained in terms of a 
linear instability mechanism. Nevertheless, it should be emphasized that this 
analogy between finite-amplitude, strictly periodic spiral waves in rotating pipe flow 
and unsteady, spatially and temporally evolving, spiral-wave disturbances in vortex 
breakdown, still remains rather loose ; further work is necessary in order to establish 
a possible connection more precisely. 

The authors would like to thank Professor A. T. Patera and Dr S. J. Cowley for 
valuable discussions on this topic. This work was supported by the National Science 
Foundation under Grant MSM-8451154. Also, N. Toplosky thanks the Naval 
tJnderwat,er Systems Center for its generous support. 

Appendix. Azimuthal wall shear stress 
It is clear that, for undisturbed rigidly rotating pipe flow, the azimuthal wall shear 

stress vanishes and, therefore, no external torque is required to maintain the 
constant angular velocity of the pipe. Here it is shown that this remains true in the 
presence of a finite-amplitude spiral-wave perturbation. 

In  dimensionless variables, the perturbation azimuthal wall shear stress 7 is given 

averaging over 8 and taking into account the no-slip condition a t  the pipe wall (A 1 )  
reduces to 

Thus, it suffices to show that 

( r  = 1). 
1 dvO 

2R dr  
7 = -- 

duo 
- = 0  ( r  = 1). 
dr  

To this end, consider the azimuthal component of the momentum equation ( 5 )  for the 
k = 0 harmonic of the spiral wave (1 1) : 

where 

d2v0 1 dvO vo - 
dr2 r dr  r2 

= RQ 

It proves convenient to work with transformed Fourier-component variables : 

&k = ruk, G'C = y v k ,  $k = y&, (A 6) 
so that (A 4) becomes 

where 

-86. d260 1 d6O 
- -  

- I  dr' r dr 
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Now, multiplying both sides of (A 7) by r ,  integrating across the pipe radius, and 
after integration by parts making usc of continuity and the no-slip condition, it is 
finally found that 

- d1;' = 0 ( r =  1) .  
dr  

which is entirely equivalent to (A 3). This same result can be also obtained directly 
by an argument based on angular momentum balance. Since the mean flow induced 
by a spiral wave of permanent form depends on r only, the associated angular 
momentum remains constant inside a control volume consisting of a pipe section of 
fixed length. Therefore, the corresponding mean torque has to vanish. 
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